3.287 \(\int \frac{\sqrt{-c+d x^2}}{\sqrt{a+b x^2}} \, dx\)

Optimal. Leaf size=191 \[ \frac{\sqrt{c} \sqrt{d} \sqrt{a+b x^2} \sqrt{1-\frac{d x^2}{c}} E\left (\sin ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|-\frac{b c}{a d}\right )}{b \sqrt{\frac{b x^2}{a}+1} \sqrt{d x^2-c}}-\frac{\sqrt{c} \sqrt{\frac{b x^2}{a}+1} \sqrt{1-\frac{d x^2}{c}} (a d+b c) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right ),-\frac{b c}{a d}\right )}{b \sqrt{d} \sqrt{a+b x^2} \sqrt{d x^2-c}} \]

[Out]

(Sqrt[c]*Sqrt[d]*Sqrt[a + b*x^2]*Sqrt[1 - (d*x^2)/c]*EllipticE[ArcSin[(Sqrt[d]*x)/Sqrt[c]], -((b*c)/(a*d))])/(
b*Sqrt[1 + (b*x^2)/a]*Sqrt[-c + d*x^2]) - (Sqrt[c]*(b*c + a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 - (d*x^2)/c]*Ellipti
cF[ArcSin[(Sqrt[d]*x)/Sqrt[c]], -((b*c)/(a*d))])/(b*Sqrt[d]*Sqrt[a + b*x^2]*Sqrt[-c + d*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.121549, antiderivative size = 191, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {423, 427, 426, 424, 421, 419} \[ \frac{\sqrt{c} \sqrt{d} \sqrt{a+b x^2} \sqrt{1-\frac{d x^2}{c}} E\left (\sin ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|-\frac{b c}{a d}\right )}{b \sqrt{\frac{b x^2}{a}+1} \sqrt{d x^2-c}}-\frac{\sqrt{c} \sqrt{\frac{b x^2}{a}+1} \sqrt{1-\frac{d x^2}{c}} (a d+b c) F\left (\sin ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|-\frac{b c}{a d}\right )}{b \sqrt{d} \sqrt{a+b x^2} \sqrt{d x^2-c}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[-c + d*x^2]/Sqrt[a + b*x^2],x]

[Out]

(Sqrt[c]*Sqrt[d]*Sqrt[a + b*x^2]*Sqrt[1 - (d*x^2)/c]*EllipticE[ArcSin[(Sqrt[d]*x)/Sqrt[c]], -((b*c)/(a*d))])/(
b*Sqrt[1 + (b*x^2)/a]*Sqrt[-c + d*x^2]) - (Sqrt[c]*(b*c + a*d)*Sqrt[1 + (b*x^2)/a]*Sqrt[1 - (d*x^2)/c]*Ellipti
cF[ArcSin[(Sqrt[d]*x)/Sqrt[c]], -((b*c)/(a*d))])/(b*Sqrt[d]*Sqrt[a + b*x^2]*Sqrt[-c + d*x^2])

Rule 423

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[b/d, Int[Sqrt[c + d*x^2]/Sqrt[a + b
*x^2], x], x] - Dist[(b*c - a*d)/d, Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x]
&& PosQ[d/c] && NegQ[b/a]

Rule 427

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*x^2]
, Int[Sqrt[a + b*x^2]/Sqrt[1 + (d*x^2)/c], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] &&  !GtQ[c, 0]

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\sqrt{-c+d x^2}}{\sqrt{a+b x^2}} \, dx &=\frac{d \int \frac{\sqrt{a+b x^2}}{\sqrt{-c+d x^2}} \, dx}{b}-\frac{(b c+a d) \int \frac{1}{\sqrt{a+b x^2} \sqrt{-c+d x^2}} \, dx}{b}\\ &=\frac{\left (d \sqrt{1-\frac{d x^2}{c}}\right ) \int \frac{\sqrt{a+b x^2}}{\sqrt{1-\frac{d x^2}{c}}} \, dx}{b \sqrt{-c+d x^2}}-\frac{\left ((b c+a d) \sqrt{1-\frac{d x^2}{c}}\right ) \int \frac{1}{\sqrt{a+b x^2} \sqrt{1-\frac{d x^2}{c}}} \, dx}{b \sqrt{-c+d x^2}}\\ &=\frac{\left (d \sqrt{a+b x^2} \sqrt{1-\frac{d x^2}{c}}\right ) \int \frac{\sqrt{1+\frac{b x^2}{a}}}{\sqrt{1-\frac{d x^2}{c}}} \, dx}{b \sqrt{1+\frac{b x^2}{a}} \sqrt{-c+d x^2}}-\frac{\left ((b c+a d) \sqrt{1+\frac{b x^2}{a}} \sqrt{1-\frac{d x^2}{c}}\right ) \int \frac{1}{\sqrt{1+\frac{b x^2}{a}} \sqrt{1-\frac{d x^2}{c}}} \, dx}{b \sqrt{a+b x^2} \sqrt{-c+d x^2}}\\ &=\frac{\sqrt{c} \sqrt{d} \sqrt{a+b x^2} \sqrt{1-\frac{d x^2}{c}} E\left (\sin ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|-\frac{b c}{a d}\right )}{b \sqrt{1+\frac{b x^2}{a}} \sqrt{-c+d x^2}}-\frac{\sqrt{c} (b c+a d) \sqrt{1+\frac{b x^2}{a}} \sqrt{1-\frac{d x^2}{c}} F\left (\sin ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|-\frac{b c}{a d}\right )}{b \sqrt{d} \sqrt{a+b x^2} \sqrt{-c+d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0464153, size = 90, normalized size = 0.47 \[ \frac{\sqrt{\frac{a+b x^2}{a}} \sqrt{d x^2-c} E\left (\sin ^{-1}\left (\sqrt{-\frac{b}{a}} x\right )|-\frac{a d}{b c}\right )}{\sqrt{-\frac{b}{a}} \sqrt{a+b x^2} \sqrt{\frac{c-d x^2}{c}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[-c + d*x^2]/Sqrt[a + b*x^2],x]

[Out]

(Sqrt[(a + b*x^2)/a]*Sqrt[-c + d*x^2]*EllipticE[ArcSin[Sqrt[-(b/a)]*x], -((a*d)/(b*c))])/(Sqrt[-(b/a)]*Sqrt[a
+ b*x^2]*Sqrt[(c - d*x^2)/c])

________________________________________________________________________________________

Maple [A]  time = 0.014, size = 109, normalized size = 0.6 \begin{align*}{\frac{c}{-bd{x}^{4}-ad{x}^{2}+bc{x}^{2}+ac}\sqrt{d{x}^{2}-c}\sqrt{b{x}^{2}+a}\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{-{\frac{d{x}^{2}-c}{c}}}{\it EllipticE} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{-{\frac{ad}{bc}}} \right ){\frac{1}{\sqrt{-{\frac{b}{a}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x)

[Out]

1/(-b*d*x^4-a*d*x^2+b*c*x^2+a*c)/(-b/a)^(1/2)*(d*x^2-c)^(1/2)*(b*x^2+a)^(1/2)*c*((b*x^2+a)/a)^(1/2)*(-(d*x^2-c
)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(-a*d/b/c)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{2} - c}}{\sqrt{b x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 - c)/sqrt(b*x^2 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{d x^{2} - c}}{\sqrt{b x^{2} + a}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*x^2 - c)/sqrt(b*x^2 + a), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{- c + d x^{2}}}{\sqrt{a + b x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2-c)**(1/2)/(b*x**2+a)**(1/2),x)

[Out]

Integral(sqrt(-c + d*x**2)/sqrt(a + b*x**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{2} - c}}{\sqrt{b x^{2} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2-c)^(1/2)/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*x^2 - c)/sqrt(b*x^2 + a), x)